Contouring Curved Quadratic Elements

نویسندگان

  • David F. Wiley
  • Hank Childs
  • Benjamin F. Gregorski
  • Bernd Hamann
  • Kenneth I. Joy
چکیده

We show how to extract a contour line (or isosurface) from quadratic elements—specifically from quadratic triangles and tetrahedra. We also devise how to transform the resulting contour line (or surface) into a quartic curve (or surface) based on a curved-triangle (curved-tetrahedron) mapping. A contour in a bivariate quadratic function defined over a triangle in parameter space is a conic section and can be represented by a rational-quadratic function, while in physical space it is a rational quartic. An isosurface in the trivariate case is represented as a rational-quadratic patch in parameter space and a rational-quartic patch in physical space. The resulting contour surfaces can be rendered efficiently in hardware.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Curved Simplicial Elements and Best Quadratic Spline Approximation for Hierarchical Data Representation

We present a method for hierarchical data approximation using curved quadratic simplicial elements for domain decomposition. Scientific data defined over twoor three-dimensional domains typically contain boundaries and discontinuities that are to be preserved and approximated well for data analysis and visualization. Curved simplicial elements make possible a better representation of curved geo...

متن کامل

High-order upwind residual distribution schemes on isoparametric curved elements

Residual distribution schemes are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution is globally continuous, defined by a Finite Element space based on triangular Lagrangian Pk elements. A natural subtriangulation of these elements allows the reuse of simple distribution formula previously developed for linear P1 triangles. Th...

متن کامل

Nonnegativity of bivariate quadratic functions on a triangle

Nadler. E., Nonnegativity of bivariate quadratic functions on a triangle. Computer Aided Geometric Design 9 (1992) 19.5-205. A necessary and sufficient condition for the nonnegativity of a bivariate quadratic defined on a triangle is presented in terms of the Bernstein-Bkzier form of the function. Keywfords. Nonnegativity, bivariate quadratic function, Bernstein-BCzier form, positiviry preservi...

متن کامل

C*-Algebra numerical range of quadratic elements

It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the C*-algebra numerical range.

متن کامل

Visualizing Edge-Conforming Discrete Field Quantities in Electromagnetic Field Problems with Interfaces

Finite element-based electromagnetic field simulation strongly benefits from using edge-conforming representations of the electric field. In this paper we address the visualization of discrete field data resulting from such simulations on 10-node quadratic tetrahedral grids. The use of higher-order grids enables, on the one hand, the accurate approximation of curved interfaces between electroma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003